Optimization of transfinite interpolation of functions with bounded Laplacian by harmonic splines on box partitions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scattered data interpolation by box splines

Given scattered data in IR, interpolation from a dilated box spline space SM (2 ·) is always possible for a fine enough scaling. For example, for the Lagrange function of a point θ one could take any shifted dilate M(2 · −j) which is nonzero at θ and zero at the other interpolation points. However, the resulting interpolant, though smooth (and local), will consist of a set of “bumps”, and so by...

متن کامل

Local lagrange interpolation with cubic C1 splines on tetrahedral partitions

We describe an algorithm for constructing a Lagrange interpolation pair based onC1 cubic splines defined on tetrahedral partitions. In particular, given a set of points V ∈ R3, we construct a set P containing V and a spline space S3( ) based on a tetrahedral partition whose set of vertices include V such that interpolation at the points of P is well-defined and unique. Earlier results are exten...

متن کامل

Local Lagrange Interpolation With Cubic C Splines on Tetrahedral Partitions

We describe an algorithm for constructing a Lagrange interpolation pair based on C cubic splines defined on tetrahedral partitions. In particular, given a set of points V ∈ IR, we construct a set P containing V and a spline space S 3 (△) based on a tetrahedral partition △ whose set of vertices include V such that interpolation at the points of P is well-defined and unique. Earlier results are e...

متن کامل

Interpolation by Positive Harmonic Functions

A natural interpolation problem in the cone of positive harmonic functions is considered and the corresponding interpolating sequences are geometrically described.

متن کامل

Interpolation of fuzzy data by using flat end fuzzy splines

In this paper, a new set of spline functions called ``Flat End Fuzzy Spline" is defined to interpolate given fuzzy data. Some important theorems on these splines together with their existence and uniqueness properties are discussed. Then numerical examples are presented to illustrate the differences between of using our spline and other interpolations that have been studied before.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2016

ISSN: 0021-9045

DOI: 10.1016/j.jat.2016.05.002